Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chlorido\{2-[1-(2-pyridylmethylimino)-ethyl]pyrrolato- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right\} \operatorname{copper}($ II)

Rongqing Li,* Pusu Zhao, Guodong Tang and Yujia Tao

Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Teachers College, Huai'an 223300, Jiangsu Province, People's Republic of China Correspondence e-mail: rongqingli333@yahoo.com

Received 9 March 2008; accepted 12 March 2008

Key indicators: single-crystal X-ray study; $T=213 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \mathrm{~A}$; R factor $=0.050 ; w R$ factor $=0.124$; data-to-parameter ratio $=13.9$.

The potential tridentate Schiff base ligand 2-[1-(2-pyridylmethylimino) ethyl]pyrrole ($\mathrm{H} L$) was synthesized from the condensation of 2-acetylpyrrole with 2-aminomethylpyridine. The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]$, was synthesized from $\mathrm{H} L$ and copper(II) chloride using triethylamine as a base to deprotonate the pyrrole NH group. The title compound is a monomer and the central copper(II) ion is bound to three N atoms of the deprotonated tridentate ligand and to one chloride ion in a square-planar $\mathrm{N}_{3} \mathrm{Cl}$ coordination.

Related literature

For related literature, see: Bertrand \& Kirkwood (1972); Brooker \& Carter (1995); Brown et al. (1988); Garland et al. (1996).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]$
$M_{r}=297.24$

Monoclinic, $P 2_{1} / c$
$a=8.830(2) \AA$
$b=7.2806(15) \AA$
$c=18.750$ (4) \AA
$\beta=100.448$ (4) ${ }^{\circ}$
$V=1185.4$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.05 \mathrm{~mm}^{-1}$
$T=213$ (2) K
$0.24 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.642, T_{\text {max }}=0.719$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.124$
$S=1.05$
2164 reflections

11059 measured reflections 2164 independent reflections 1840 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.943(4)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.006(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.956(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2319(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.98(16)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$98.29(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$163.31(15)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$178.47(10)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$81.33(14)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$98.40(10)$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Department of Education of Jiangsu Province (No. 05KJD150037) and Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (No. JSKC06025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2384).

References

Bertrand, J. A. \& Kirkwood, C. E. (1972). Inorg. Chim. Acta, 6, 248-252.
Brooker, S. \& Carter, B. M. (1995). Acta Cryst. C51, 1522-1524.
Brown, S. J., Tao, X., Wark, T. A., Stephan, D. W. \& Mascharak, P. K. (1988). Inorg. Chem. 27, 1581-1587.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Garland, M. T., Manzur, J., Moreno, Y., Spodine, E., Baggio, R. \& González, O. (1996). Acta Cryst. C52, 1405-1407.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Chlorido 2 2-[1-(2-pyridylmethylimino)ethyl]pyrrolato- $\left.\kappa^{3} N, N^{\prime}, N^{\prime}\right\}$ copper(II)

R. Li, P. Zhao, G. Tang and Y. Tao

Comment

Many efforts have been made to investigate complexes of wide range of acyclic Schiff base ligands, in particular the pyridine containing systems. However, Much less interest has been attracted in complexes of pyrrole-analogues of such ligands. Recently, our attention has been turned to the copper(II) chemistry of N_{3} tridentate Schiff base ligands. Ligand L^{-}, the deprotonated form of $\mathrm{H} L$, used for the synthesis of the title complex is of this type.

The structure of the title compound consists of isolated neutral monomeric [CuLCl$]$ molecules (Fig. 1). The copper(II) ion is bound to three nitrogen atoms (comprised of one deprotonated pyrrole nitrogen donor, one pyridine nitrogen donor and one imine nitrogen donor) of the deprotonated tridentate ligand and to one chloride ion, giving an $\mathrm{N}_{3} \mathrm{Cl}$ coordination sphere. The geometry of the coordination polyhedron around the copper(II) ion is square planar ($\mathrm{\Sigma angles}$ at $\mathrm{Cu}=360.0^{\circ}$). Of the three $\mathrm{Cu}-\mathrm{N}$ bond distances, the shortest one occurs between the copper atom and the deprotonated negatively charged pyrrole nitrogen atom ($\mathrm{N} 1-\mathrm{Cu} 1$) and the longest one forms between the copper atom and the pyridine nitrogen donor which is trans to the pyrrole nitrogen $(\mathrm{Cu} 1-\mathrm{N} 3)$. The two cis $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles are very similar and are both smaller than 90°. This is as expected as both of the angles are part of five-membered, pyrrole-imine or pyridine-imine, chelate rings. The two cis $\mathrm{N}-\mathrm{Cu}-\mathrm{Cl}$ angles are similar to one another but are both bigger than a right angle. $\mathrm{The} \mathrm{Cu}-\mathrm{N} 1$ (pyrrole nitrogen) bond distance is very similar to that reported for the related copper(II) complexes (Bertrand \& Kirkwood, 1972; Brooker \& Carter, 1995). $\mathrm{Cu}-\mathrm{N}$ (pyridine nitrogen) bonds are usually 2.00-2.05 \AA long (Brown et al., 1988; Garland et al., 1996), so the $\mathrm{Cu}-\mathrm{N} 3$ (pyridine nitrogen) distance in this complex [2.007 (4) \AA] is normal.

Experimental

Ligand $H L$ was synthesized from the condensation of 2-acetylpyrrole with 2-aminomethylpyridine.
To a solution of Ligand $\mathrm{H} L(0.375 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$ was added triethylamine $(0.385 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$. To this resulting solution was added a green solution of copper(II) chloride dihydrate (0.375 mmol) in methanol (5 ml), over which time a precipitate formed. The resulting mixture was stirred for 3 hr after which the green solid was collected by filtration, washed with methanol and dried in vacuo. Yield: 0.093 g (80% based on copper(II) chloride used). Single crystals of $[\mathrm{CuLCl}]$ were obtained by vapour diffusion of diethyl ether into a dichloromethane solution. Analysis: found $\mathrm{C} 48.74, \mathrm{H}$ 3.97, N 14.18; calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{CuCl} \mathrm{C} 48.49, \mathrm{H} 4.07, \mathrm{~N}, 14.14 \%$. IR: $v, \mathrm{~cm}^{-1}, 1601(\mathrm{C}=\mathrm{N})$.

Refinement

Hydrogen atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ bonds $=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for the methyl group $]$.

supplementary materials

Figures

Fig. 1. View of the title compound $[\mathrm{Cu} L \mathrm{Cl}]$. Displacement ellipsoids for non- H atoms are drawn at the 30% probability level.

Fig. 2. View of the crystal packing along b axis of the unit cell of the monomeric title complex $[\mathrm{Cu} L \mathrm{Cl}]$.

Chlorido\{2-[1-(2-pyridylmethylimino)ethyl]pyrrolato- $\left.\kappa^{3} N, N^{1}, N^{י 1}\right\} \operatorname{copper}($ II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]$
$M_{r}=297.24$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=8.830(2) \AA$
$b=7.2806(15) \AA$
$c=18.750(4) \AA$
$\beta=100.448(4)^{\circ}$
$V=1185.4(4) \AA^{3}$
$Z=4$
$F_{000}=604$
$D_{\mathrm{x}}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71070 \AA$
Cell parameters from 3740 reflections
$\theta=2.1-25.6^{\circ}$
$\mu=2.05 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Block, green
$0.24 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD

 diffractometerRadiation source: sealed tube
Monochromator: graphite
$T=213(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.642, T_{\text {max }}=0.719$
11059 measured reflections

2164 independent reflections
1840 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=25.4^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-7 \rightarrow 8$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.124$
$S=1.05$
2164 reflections
156 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.06 P)^{2}+1.99 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu1	$0.50155(6)$	$0.79633(7)$	$0.42653(3)$	$0.0312(2)$
C11	$0.64180(13)$	$0.80713(16)$	$0.33884(6)$	$0.0431(3)$
N1	$0.6561(4)$	$0.6909(5)$	$0.5025(2)$	$0.0378(9)$
N2	$0.3797(4)$	$0.7939(5)$	$0.50388(19)$	$0.0331(8)$
N3	$0.3055(4)$	$0.9028(5)$	$0.37105(17)$	$0.0303(8)$
C1	$0.8039(6)$	$0.6345(6)$	$0.5150(3)$	$0.0479(12)$
H1	0.8685	0.6360	0.4810	0.057^{*}
C2	$0.8452(7)$	$0.5741(8)$	$0.5857(3)$	$0.0648(16)$
H2	0.9412	0.5291	0.6073	0.078^{*}
C3	$0.7176(7)$	$0.5928(7)$	$0.6184(3)$	$0.0593(15)$
H3	0.7107	0.5626	0.6659	0.071^{*}
C4	$0.6022(6)$	$0.6658(6)$	$0.5659(2)$	$0.0423(11)$
C5	$0.4452(6)$	$0.7218(6)$	$0.5646(2)$	$0.0413(11)$
C6	$0.2223(5)$	$0.8562(6)$	$0.4865(2)$	$0.0374(10)$
H6A	0.2082	0.9629	0.5156	0.045^{*}
H6B	0.1534	0.7601	0.4970	0.045^{*}
C7	$0.1863(5)$	$0.9048(6)$	$0.4073(2)$	$0.0327(9)$
C8	$0.0406(5)$	$0.9525(7)$	$0.3731(3)$	$0.0434(12)$

H8	-0.0410	0.9485	0.3982	0.052^{*}
C9	$0.0156(6)$	$1.0060(7)$	$0.3019(3)$	$0.0514(13)$
H9	-0.0829	1.0374	0.2783	0.062^{*}
C10	$0.1382(6)$	$1.0128(7)$	$0.2655(3)$	$0.0471(12)$
H10	0.1249	1.0534	0.2178	0.057^{*}
C11	$0.2804(5)$	$0.9580(6)$	$0.3018(2)$	$0.0371(10)$
H11	0.3628	0.9593	0.2771	0.045^{*}
C12	$0.3689(7)$	$0.6982(7)$	$0.6292(3)$	$0.0551(14)$
H12A	0.2995	0.7987	0.6315	0.083^{*}
H12B	0.4458	0.6960	0.6725	0.083^{*}
H12C	0.3124	0.5849	0.6249	0.083^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0315(3)$	$0.0342(3)$	$0.0282(3)$	$-0.0016(2)$	$0.0058(2)$	$0.0003(2)$
C11	$0.0374(6)$	$0.0497(7)$	$0.0463(7)$	$0.0016(5)$	$0.0183(5)$	$0.0013(5)$
N 1	$0.038(2)$	$0.032(2)$	$0.039(2)$	$-0.0039(16)$	$-0.0028(17)$	$0.0009(16)$
N 2	$0.044(2)$	$0.0289(18)$	$0.0278(19)$	$-0.0009(16)$	$0.0090(16)$	$-0.0006(15)$
N 3	$0.0331(18)$	$0.0318(18)$	$0.0275(18)$	$-0.0058(16)$	$0.0094(15)$	$-0.0027(15)$
C1	$0.043(3)$	$0.037(3)$	$0.057(3)$	$-0.003(2)$	$-0.010(2)$	$-0.007(2)$
C2	$0.065(4)$	$0.051(3)$	$0.064(4)$	$0.008(3)$	$-0.028(3)$	$-0.009(3)$
C3	$0.094(4)$	$0.035(3)$	$0.036(3)$	$0.005(3)$	$-0.022(3)$	$-0.002(2)$
C4	$0.066(3)$	$0.025(2)$	$0.032(2)$	$-0.003(2)$	$-0.003(2)$	$-0.0036(18)$
C5	$0.066(3)$	$0.025(2)$	$0.034(2)$	$-0.008(2)$	$0.010(2)$	$-0.0033(19)$
C6	$0.045(3)$	$0.036(2)$	$0.037(2)$	$-0.005(2)$	$0.021(2)$	$-0.001(2)$
C7	$0.038(2)$	$0.031(2)$	$0.031(2)$	$-0.0075(19)$	$0.0108(18)$	$-0.0060(19)$
C8	$0.033(2)$	$0.050(3)$	$0.048(3)$	$-0.004(2)$	$0.011(2)$	$-0.005(2)$
C9	$0.036(3)$	$0.057(3)$	$0.056(3)$	$0.006(2)$	$-0.003(2)$	$-0.009(3)$
C10	$0.053(3)$	$0.053(3)$	$0.031(2)$	$-0.003(2)$	$-0.002(2)$	$-0.002(2)$
C11	$0.034(2)$	$0.047(3)$	$0.031(2)$	$-0.004(2)$	$0.0074(19)$	$-0.005(2)$
C12	$0.094(4)$	$0.042(3)$	$0.032(3)$	$-0.005(3)$	$0.018(3)$	$0.004(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.943(4)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.956(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.006(3)$
$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2319(12)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.347(6)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.370(6)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.291(6)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.442(6)$
$\mathrm{N} 3-\mathrm{C} 11$	$1.339(5)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.354(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(7)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.384(8)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300

$\mathrm{C} 4-\mathrm{C} 5$	$1.441(7)$
$\mathrm{C} 5-\mathrm{C} 12$	$1.499(7)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.503(6)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 7-\mathrm{C} 8$	$1.374(6)$
C8-C9	$1.369(7)$
C8-H8	0.9300
C9-C10	$1.381(7)$
C9-H9	0.9300
C10-C11	$1.374(6)$
C10-H10	0.9300
C11-H11	0.9300
C12-H12A	0.9600

sup-4

supplementary materials

C3-C4	1.388 (7)	C12-H12B	0.9600
C3-H3	0.9300	C12-H12C	0.9600
N1-Cu1-N2	81.98 (16)	C4-C5-C12	121.7 (4)
N1-Cu1-N3	163.31 (15)	N2-C6-C7	108.7 (3)
N2-Cu1-N3	81.33 (14)	N2-C6-H6A	110.0
N1-Cu1-Cl1	98.29 (12)	C7-C6-H6A	110.0
N2-Cu1-Cl1	178.47 (10)	N2-C6-H6B	110.0
N3-Cu1-Cl1	98.40 (10)	C7-C6-H6B	110.0
C1-N1-C4	106.6 (4)	H6A-C6-H6B	108.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	141.0 (4)	N3-C7-C8	121.0 (4)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cu} 1$	112.4 (3)	N3-C7-C6	116.7 (4)
C5-N2-C6	125.9 (4)	C8-C7-C6	122.3 (4)
C5-N2-Cu1	116.0 (3)	C9-C8-C7	119.9 (4)
C6-N2-Cu1	117.8 (3)	C9-C8-H8	120.0
C11-N3-C7	118.5 (4)	C7-C8-H8	120.0
C11-N3-Cu1	126.5 (3)	C8-C9-C10	119.3 (5)
C7-N3-Cu1	114.8 (3)	C8-C9-H9	120.3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	110.1 (5)	C10-C9-H9	120.3
N1-C1-H1	125.0	C11-C10-C9	118.2 (5)
C2-C1-H1	125.0	C11-C10-H10	120.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	107.4 (5)	C9-C10-H10	120.9
C1-C2-H2	126.3	N3-C11-C10	122.9 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.3	N3-C11-H11	118.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	105.9 (5)	C10-C11-H11	118.6
C2-C3-H3	127.0	C5-C12-H12A	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	127.0	C5-C12-H12B	109.5
N1-C4-C3	109.9 (5)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
N1-C4-C5	115.6 (4)	C5-C12-H12C	109.5
C3-C4-C5	134.5 (5)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
N2-C5-C4	113.9 (4)	H12B-C12-H12C	109.5
N2-C5-C12	124.3 (5)		

supplementary materials

Fig. 1

Fig. 2

